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Observation:

There is a large momentum anisotropy:
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<p% : p§> ~ 20%

Vo =

Interpretation

e The medium responds as a fluid to differences in X and Y pressure gradients



Data on Elliptic Flow:
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Elliptic flow is large X:Y ~ 2.0 : 1



Need Hydrodynamics
0,T" =0 (eut'v” +pAH*) = 0
e Equation of State (EoS): p(e, n)
e Don't really know what the constituents are?

e Transport theory viable?

To interpret these EOM let us write them in the LRF:

T — e = —(e+p)op'



Work

|

de = —(e+p) o'
de:th6iVi de — —(e+p)%
J Vde = —edV —pdV
e The EOM reads
d(eV) = —pdV

e Compare: d(eV) = T'd(sV') — pdV and find
d(sV) =0

pdV Work means Entropy is Conserved



The Bjorken expansion
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Spectators

e Define the space time rapidity and proper time: ng = %log iz?i and 7 =
1., 14 z/t 1. 14w, 1. 14p.,/FE
—log———— =~ —log——= — log
2 T 1—2z/t 2 1—vz 2 " 1—p./FE
space time rapidity fluid rap|d|ty particlevrapidity

All rapidities are (almost) the same in high energy collision

t2—z2



1D Bjorken Expansion: (Bjorken)
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e The Equation of motion

oe = —(e+p)o,v°
de 1
. —(e+p) ~
d(re)
dr - P

Energy per rapidity decreases due to p dV work



1D Expansion: Hydro vs. Free Streaming

de e D
— = —— 4+ —=
dr T T
~~ ~—~ ~~
de —edV —pdV

e For Euler Hydro and Ideal Gas: p = %e , € = €q (

ds Const
7§ = — = Cons
dy
e Number per Rapidity: n oc T
dn
Tn — — = Const



1D Expansion: Free Streaming - Rough Approximation

de e
dT T T
N~

4
e How would the “temperature” , € = € (%)

wm TO (E)
T

e Entropy Per Rapidity: s oc T
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dy

g—; is approximately constant even if non-equilibrium effects taken into account



3D Expansion

V ~

e Entropy is conserved:

1
T
(sV') ~ Const
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Then with s oc T



Summary
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Free streaming or Viscous effects do not radically change powers



Hydrodynamics with Viscosity (Gyulassy and Danielewicz)
TY = pd” —n (821)9 + vt — 5(57"78 : v) + bulk viscosity

e The Bjorken expansion becomes

de 1 1
o= e — T, =
dt T
—~— \.V,/ N——
de edV — pegdV

e The pressure get reduced by the expansion

4 1
{Z;z —P—3N =
3 T
—~—
0, v?
e The equation of motion is
de 1 4 n
a = letrst g
~— —_— =~



How valid is Hydrodynamics?

de 1 417
dt (e+p) T 372
e Comparing the size of the viscous term to the ideal term need .
1
T - «1
e+pT

e Function of time, temperature, etc, (e + p) = sT

T : <1
s 71
~~ ~~

fluid parameter experimental parameter ~1/2

Need 1/ s smallish to have hydro at RHIC



What does 77/s < 0.4 mean theoretically?

® Perturbation theory: (Baym and Pethick. Arnold, Moore, Yaffe)

— Kinetic theory of quarks and gluons + soft gauge fields + collinear

emission
TWKQKEEWKF
0.5)\2
il ~ 0.3 (—)
S g
L N = 4 Super Yang Mills at Strong COUpling (Kovtun, Son, Starinets, Policastro)

— No quasi-particles. Conjectured Lower Bound



Temperature dependence of shear viscosity

e For a gas of n particles with cross section o

T

n~ —

a0

e Scale invariant theory: oy % and ) oc T3

1 1
e+p T (e+p)r T
e (Constant cross section: o
T 1 1
e+p oo nl (e +p)T  nogr

n('T") determines the quality of hydro vs. time



1D Expansion
1D
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e Scale invariant theory: Hydro gets better

n 1
(e+p)r 7T
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e Constant Cross Section: Hydro stays the same

n 1
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(e +p)T  nogT

~ Const.



3D Expansion
3D
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e Scale invariant theory: Hydro stays the same

1
il ~N — ~ Const

(e+p)r 7T

e Constant Cross Section: Hydro gets worse fast

n 1 72

(e +p)T  nogT o



Summary
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(digression)



What does 77/s >~ 1/47 mean?
e Many things wrong about AdS/CFT — jets. initial reaction etc

® |Is something qualitatively wrong/right from AdS/CFT in the soft sector?

e Kinetic picture of the plasma. Occasional scattering of gluons

~0000000000000000 ™

L.

The time between collisions is

1
Te N Cgmfp ~ g4—T

In AdS/CFT there are no independent scattering events/particles etc.



Spectral Densities in ADS/CFT and Perturbation Theory
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Euclidean Correlator: Free and Strongly Interacting
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Can lattice distinguish these qualitatively different theories?



(end digression)



Solving Navier Stokes

e The Navier Stokes equations

0, TH =0 TV =  p§¥ 4 U
equilibrium correction

e The “first order” stress tensor instantly assumes a definite form.

ﬂs.
.
I

—n (8in + ot — %5”8 : v)
O(e) = Of¢)

e Can make “second order” models which relax to the correct form (srael, Baier et a)

—Tr Oy + otherderivs = 77 + 17 (8%] + 07" - §5”3 | U>
O(e®) = O(e) + Ofe)

Can solve these models



Running Viscous Hydro in Three Steps
1. Run the evolution and monitor the viscous terms

2. When the viscous term is about half of the pressure:
— T is not asymptotic with ~ 1(9"v7 4 d7v' — 26 ')
Freezeout is signaled by the equations.

3. Compute spectra:

— Viscous corrections to the spectra grow with pr

fo— fot 0

Maximum pr is also signaled by the equations.



Bjorken Solution with transverse expansion: Step 1 (/s = 0.2)
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Viscous corrections do NOT integrate to give an O(1) change to the flow.



Freezeout

e Freezeout when the expansion rate is too fast
TRauuM ~ 1

e The viscosity is related to the relaxation time

2 2
~ VTR D~ ev
e+p " th
® So the freezeout criterion is
n "

p



Monitor the viscous terms and compute freezeout: Step 2

e Contours where viscous terms become O(1)

M 1
Ty yp = =
p M T2
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The space-time volume where hydro applies depends strongly on 77/5



Step 3: Viscous corrections to the distribution function f, — f, + 0 f

e Corrections to thermal distribution function fo — fo + 0 f
— Must be proportional to strains
— Must be a scalar

— General form in rest frame and ansaiz
of = F(|p|)p'p’mij = o f < fop'p’ mij

— Can fix the constant

ij ij dgp Pipj
poY = [ SIS T (ot o)
find :
of = fopipjﬂij

2(e + p)T?



Viscous Hydro Results:
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Not compared to data yet. p/e = % massless bose gas. 17/s = Const
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n/s = 0.2 with § f and without 9 f
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n/s = 0.05 with § f and without ¢ f
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n/s = 0.2 and gradients vs. 7l
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Compare to /s = 0.05
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Independent of second derivative terms (K. Dusling, DT)
—Tr Oy + otherderivs = 77 +n (8%}9 + vt — 55”8 - fv)
O(e*) = O(e) + O(e)
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Gradient expansion is working. Temperature is a good concept.

Worse at larger viscosities and larger pr



Comparison with Huichao Son and U. Heinz
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Codes agree. Differ in how second order terms are implemented



Hydro Conclusions:
e \iscosity does not change the ideal hydrodynamic solution much.
e \iscosity does change the freezeout spectrum of final hadrons

e \iscosity signals the boundary of applicability of hydro
— Need /s < 0.3 to use hydro at all.

— For pr 2, 1.5 GeV the viscous corrections large.

Will even 17/s =~ 1/47 be enough to explain the v, data?



